Tris-Glycine Mini Gels

S	Package Contents	Product 4%, 6%, 8%, 10%, 12%, 14%, 16%, 18%, 4–12%, 8–16%, 4–20%, or 10–20% Tris-Glycine Gels	Quantity Box of 5 or 10 gels			
	Storage Conditions	 Store at 2–8°C for an 8-week shelf life. Use 16% and 18% Tris-Glycine gels within 4 weeks. Do not freeze. 				
	Required Materials	 Protein sample and standard Tris-Glycine Native Running Buffer (10X) Tris-Glycine SDS Running Buffer (10X) Tris-Glycine Native Sample Buffer (2X) Tris-Glycine SDS Sample Buffer (2X) NuPAGE[®] Reducing Agent Novex[®] Power Supply Adapters (Cat. no. ZA10001) if not using a Life Technologies[™] power supply XCell <i>SureLock[®]</i> Mini-Cell gel running tank 				
	Timing	Run Time:Denaturing electrophoresis: ~90 minutes Native electrophoresis: 1–12 hours (depending on gel percentage and electrophoresis device)Voltage:125 V constant				
Å	Selection Guide	Protein Gels Go online to view related products.				
	Product	Tris-Glycine Gels are precast polyacrylamide gels designed for optimal separation and resolution of small- to large-sized proteins (6–500 kDa) during electrophoresis under native or denaturing conditions, depending on the buffer. Tris-Glycine Mini Gels are available in the following				
Ģ	Description	variations:				
		 Polyacrylamide percentages: 4%, 6%, 8%, 10%, 12%, 14%, 16%, 18%, 4–12%, 8–16%, 4–20%, and 10–20% Well formats: 1, 5, 9, 10, 12, 15, 2D, and IPG wells Thicknesses: 1.0 mm and 1.5 mm 				
	Important Guidelines	 This system is designed for use in the XCell SureLock[®] Mini-Cell gel running tank. 				
	Online Resources	Visit our product page for additional information and protocols. For support visit www.lifetechnologies.com/supp				

For Research Use Only. Not for use in diagnostic procedures.

Protocol Outline

- A. Prepare samples, buffers, and gels.
- B. Assemble the gel apparatus.
- C. Load buffer, samples, and standards.
- D. Perform electrophoresis.

Electrophoresis Protocol

See page page 2 to view a procedure for preparing and running your electrophoresis experiment.

Choosing the Right Gel Type for Your Application

Review the table in the pop-up to determine the best gel type for your experiment.

Choosing the Right Gel Percentage and Buffer

Refer to the migration charts in the pop-up to find the gel best suited for your application. As a general rule, your proteins of interest should migrate through ~70% of the length of the gel for the best resolution. When protein molecular weights are wide ranging or unknown, gradient gels are usually the best choice.

Choosing a Well Format and Gel Thickness

We offer polyacrylamide gels in a choice of nine well formats and two thicknesses, depending on the gel type. When loading large samples (>30 µL), a thicker gel with fewer wells is more appropriate; Bolt[™] Bis-Tris Plus gels are the best choice when loading large samples. When blotting, however, proteins will transfer more easily from a thinner gel.

Choosing a Protein Standard for your Application

Choose a Life Technologies ${}^{{\ensuremath{\mathsf{TM}}}}$ standard based on your experiment:

Pre-Stained: SeeBlue[®] Plus2 Pre-Stained Standard or Novex[®] Sharp Pre-Stained Protein Standard

 $\textbf{Unstained}: Novex^{\tiny{(8)}}$ Sharp Unstained Protein Standard or Mark12^{\tiny{\text{TM}}} Unstained Standard

Western: MagicMarkTM XP Western Protein Standard

For all other specialty standards, please view further information here.

Limited Product Warranty and Disclaimer Details

NuPAGE® Tris-Glycine Mini Gel Electrophoresis Protocol

Follow the procedure below to prepare for and perform Native or SDS polyacrylamide gel electrophoresis using NuPAGE® Tris-Glycine Mini Gels.

Timeline		neline	Steps	Procedure Details			
1		1	Prepare samples	Components	Denaturing Sample*	Native Sample	
				Sample	xμL	x μL	
				Tris-Glycine SDS Sample Buffer (2X)	5 µL		
				Tris-Glycine Native Sample Buffer (2X)		5 μL	
				Deionized Water	to 5 µL	to 5 µL	
	1			Total Volume	10 µL	10 µL	
				* For reduced samples, add NuPAGE [®] Reducing Agent (10X) to 1X.			
				Denaturing Samples: Heat at 85°C for 2 minutes.			
				Native Samples: Do not heat.			
				Prepare 1X Sample Buffer for dilutions of samples, if needed.			
2			Prepare buffers	Denaturing Buffer: Add 100 mL 10X Tris-Glycine SDS Running Buffer to 900 mL deionized water to prepare 1X Tris-Glycine SDS Running Buffer.			
	2			Native Buffer: Add 100 mL 10X Tris-Glycine Native Running Buffer to 900 mL deionized water to prepare 1X Tris-Glycine Native Running Buffer.			
	3		Prepare gels	 a. Remove the comb, and rinse the gel wells three times using 1X Running Buffer. b. Remove the white tape near the bottom of the gel cassettes. c. Place the gels in the XCell <i>SureLock®</i> Mini-Cell gel running tank. d. Fill the gel wells with 1X Running Buffer. 			
	4	(North	Load samples and standards	Load the appropriate volume and protein mass of your sample on the gel. Then, load your standards.			
	5	Real Provide American Americ American American A	Load buffers	Fill the Upper (200 mL) and Lower (600 mL) Buffer Chambers with the appropriate 1X Running Buffer.			
6			Run	NOTE: If you are not using a Life Technologies [™] power supply, install the Novex [®] Power Supply Adapters (Catalog number ZA10001).			
	6			Optimal run times are dependent on gel percentage and electrophoresis device.			
				Denaturing Electrophoresis: Run for 90 minutes at 125 V constant.			
				Native Electrophoresis: Run for 1–12 hours at 125 V constant.			
_							